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Irreversible quantum baker map
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We propose a generalization of the model of classical baker map on the torus, in which the images of two
parts of the phase space do overlap. This transformation is irreversible and cannot be quantized by means of a
unitary Floquet operator. A corresponding quantum system is constructed as a completely positive map acting
in the space of density matrices. We investigate spectral properties of this superoperator and their link with the
increase of the entropy of initially pure states.
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In past years a reexploration of a finite-dimensional H
bert spaceH and the space of density operators acting o
took place. Emerging interest in properties of mixed qu
tum states is stimulated by research on the decoherence
nomena@1,2#, and recent developments in modern applic
tions of quantum mechanics including quantum informati
cryptography, and computing@3#. The concept of mixed
states is crucial while analyzing nonunitary quantum evo
tion, necessary to describe processes of measuremen
interaction with an environment@4,5#, or by looking for
quantum analogs of classically irreversible dynamical s
tems. The latter issue was considered in the pioneering
pers of Graham@6#, who analyzed an irreversible map on th
cylinder and found a corresponding quantum dynamics in
infinite Hilbert space.

Any quantum mapL should send positive density oper
tors into other positive operators. Moreover, since any s
tem under consideration, described by a density opera
may be coupled to an environment, soL^ 1m should be posi-
tive for any extension ofL by the m-dimensional identity
matrix 1m . This property is calledcomplete positivenes
~CP! @7#. If the classical dynamics preserves probability, th
the corresponding quantum map should preserve the trac
the density operator.

Research on quantum analogs of classically chaotic
namical system often concentrates on two-dimensional
preserving maps. The most popular examples include
classical baker map and the Arnold cat map. They w
quantized by finding the corresponding unitary operato
which act on a finite-dimensional Hilbert spaceH ~see, e.g.,
Ref. @8#, and references therein!.

In this paper, we propose a generalization of the class
and quantum baker maps. The classical map proposed
reversible, and therefore its quantum counterpart canno
represented by a unitary operator. The classical map tr
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forms a unit square into a rectangular subset of it, while
quantum map is a completely positive, trace preserving
peroperator acting in the space of density matrices of a fi
size. Our research is related to recent papers of Soklakov
Schack@8#, and Saraceno and Vallejos, who quantized a d
sipative version of the baker map@9#, and also studied a
stochastic system devised to take into account the effect
decoherence@10#. However, the system analyzed here is d
ferent, since it is not dissipative, it conserves the probabi
and is deterministic. The quantization of the system on
torus leads to a map acting on finite dimensional Hilb
space, in contrast to the model discussed by Graham@6#.
Therefore, the irreversible quantum baker map is suitable
investigate the spectral properties of the superoperator an
semiclassical regime. Furthermore, our approach allows
to introduce an irreversibility into any unitary quantum m
on the torus. Hence, by analyzing different unitary quant
maps one may investigate the role of classical chaos in
speed of decoherence in the quantum system.

The standard baker map is a transformation of the u
squareI, a model of a finite phase space, onto itself. It co
sists of stretching the square in one direction, labeledq, and
squeezing it in another direction~labeledp) by the factor of
2. After the stretching procedure, the baker cuts the recta
into two pieces and places the right piece at the top of the
one, as shown in Fig. 1~transformationQ). Assume that
instead of doing this, the sloppy baker puts the right piec
bit too low, in such a way that aD/2 overlap with the left
piece occurs. This effect is described by the transforma
LD ~formally an interval translation map acting in thep di-

FIG. 1. Classical sloppy baker map; after the original ba
transformationU, the top half of the square is shifted down byD/2
~operatorLD).
©2002 The American Physical Society01-1
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rection@11#!, which shifts all points from the top half of th
square (p.1/2) down byD/2. The formal definition of the
classical sloppy baker mapis

UD : S q

pD→B S 2q2@2q#

1
2 ~p1@2q# !D →

LD S 2q2@2q#

1
2 „p1@2q#~12D!…D ,

~1!

where@x# denotes the integer part ofx and the parameterD
belongs to@0,1#. The mapUD is not reversible forD.0,
because any point for whichpP(@(12D)/2#,1/2) has two
preimages, while the points withp.12(D/2) have none.

We will use density distributionf on the square,
*
I

f (a)da51, f >0, wherea is a short notation for the pai
(q,p). The mapUD generates the Frobenius-Perron opera
acting in the space of classical density distributions,

Mf ~a!5E
I

f ~a8!d„a2U~a8!…da8. ~2!

Since the map is not dissipative, andUD(I ),I , the operator
M preserves the probability,*I Mf (a)da5*

I
f (a)da51.

The densityf * (a)51/(12D) for aP@0,1#3@0,12D) and
0 elsewhere is invariant under the action of the opera
Mf * 5 f * . Several versions of quantum baker map on
torus are known@12–14#. We use the first form of the quan
tum operator proposed by Balazs and Voros@12#,

B5FN
† S FN/2 0

0 FN/2
D , ~3!

whereFN denotes theN point discrete Fourier transforma
tion, @FN#kl5(1/AN)e22p ikl /N,k,l 50,...,N21. Since the
sloppy mapUD does not enjoy the symmetry of the origin
baker map, we will not need the symmetric quantum mo
introduced by Saraceno@13#. Unitary operatorB acts on the
N-dimensional Hilbert spaceHN , whereN is even. The clas-
sical mapUD is irreversible, so its quantization cannot b
achieved by means of unitary operators. The quantum op
tor LD corresponding to the classical mapLD should act on
the space of mixed quantum states, and may be realized
superoperator. Any superoperatorL that defines a com
pletely positive map may be written in the so-called Kra
form @7#,

L~r!5(
i 51

K

AirAi
† , ~4!

wherer is a density matrix andK is finite. If operatorsAi
fulfill the condition

(
i 51

K

Ai
†Ai51N , ~5!

the mapL(r) is trace preserving. The classical mapUD

transforms the bottom half of the squareI into itself and
shifts the top one down byD/2. The two halves ofI are
transformed separately. Therefore we split the phase s
06520
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into bottom and top, and introduce two projection operat
Db andDt , which when written in the eigenbasis of positio
operator have the form

Db5FN
† S 1N/2 0

0 0DFN ; Dt5FN
† S 0 0

0 1N/2
DFN , ~6!

Notice that the superoperatorLM(r)5DbrDb
†1DtrDt

† cor-
responds to the up/down measurement process, and
Kraus operatorsA15Db andA25Dt fulfill the condition~5!.
To construct a quantum shift transformationLD , we will use
the unitary operator of translation in momentum,

Vuk&5uk11&, VN51N . ~7!

Hereuk& denotes the discrete eigenstate of momentum wh
is periodic,uk1N&5uk& @13#. Fork51, the state is localized
at the bottom ofI. Then the vertical shift of the top half ofI
by D/2 is realized by the translation operator~7! acting on
the previously measured system,

Dt85V2ND/2Dt . ~8!

We assume here that the exponent is integer; however,
construction might be generalized for any realD. Since the
position of the bottom part remains unchanged, the en
quantum transformationLD reads

LD~r!5DbrDb
†1Dt8rD8t

† . ~9!

This superoperator resets to the off-diagonal blocks of thr
matrix zero in thep representation. This is related to the fa
that to displace one-half of the torus we need to perform
measurement, which implies decoherence. Thus even
D50, the operatorLD differs from identity, but the effect of
the measurement becomes negligible in the classical l
N→`.

Using the above superoperator (LD), we construct the
entire quantum sloppy baker map,

BD~r!5LD~BrB†!5DbBrB†Db
†1Dt8BrB†D8t

† .
~10!

Note that the Kraus operatorsA15DbB andA25Dt8B fulfill
condition ~5!, with K52.

To demonstrate that quantum system defined by Eq.~10!
corresponds to the classical sloppy baker map we com
the classical and the quantum structures in the phase sp
In order to define quantum quasiprobability distribution, w
use a family of states localized at points of the squ
N3N lattice in the phase space constructed by means
translation operators@13#. The operatorU of translation in
position is defined similarly toV,

Uun&5un11&, UN51N , ~11!

where un& are position eigenstates, satisfyingun1N&5un&.
As a reference state we choose arbitrarily the wave pa

u 1
2 , 1

2 & localized in (12 , 1
2 ),
1-2
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^nu1/2,1/2&5~2/N!21/4e2$p[n2(N/2)]2/N%2 ipn, ~12!

which becomes Gaussian forN→`. We translate it to any
point (q,p), whereNq andNp are integers (N is even!,

uq,p&5VNp2(N/2)UNq2(N/2)u1/2,1/2&. ~13!

These states allow one to define a Husimi representatio
the phase space of any mixed quantum stater,

Hr~q,p!5^q,puruq,p&. ~14!

We analyzed the evolution of an exemplary stateua0&
localized ata0 and the classical transformation of the corr
sponding density distribution. On the left-hand side of Fig
we present the classical density and its image a
T51,2,5, and 30 iterations of the Frobenius-Perron oper
~2!. The right-hand side shows the Husimi representati
~14! of the initially pure quantum stateua0&^a0u and its im-
ages afterT actions of the superoperatorBD . The quantum
quasiprobability distributionHr is localized in the same re
gion of the phase space as the classical density distribu
Since the Husimi distribution may resolve quantum pha

FIG. 2. Sloppy baker map withD51/4. Time evolution
of an initially localized classical density concentrated
a05(0.25,0.25)~left! and Husimi representation~14! of the density
matrix of an initially pure state localized in the same pointa0 and
iterated by the quantum map~10! for N5512 ~right!.
06520
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space structures at the length scale of the order
\1/2}N21/2, the classical density becomes narrower than
quantum counterpart already after first iteration.

After 30 iterations of the classical map the density dis
bution is close to the invariant measuref * . Also the quan-
tum stateBD

30(ua0&^a0u) is close to the invariant density ma
trix

r* 5BD~r* !, ~15!

the existence of which is guaranteed by the trace preser
condition ~5!. The stater* is localized on the rectangle
@0,1#3@0,12D#. Moreover, it is almost isotropic on the co
responding@N(12D)#-dimensional subspace. To show th
we verified that the von Neumann entropy of the invaria
stateS(r* )52Tr r* ln r* is close to the maximal entrop
for the @N(12D)#-dimensional subspace of the Hilbe
spaceHN ,

S~r* !'Smax
[N(12D)]

ª ln„N~12D!…. ~16!

It is instructive to look at the periodic orbits of the cla
sical transformationUD . They are those of the original~re-
versible! baker map with momentum scaled by the fac
(12D),

qT* 5
n

2T21
, pT* 5

r ~n!

2T21
~12D!, ~17!

FIG. 3. Classical orbits of periodT51,2,3,4 (3) ~left! are lo-
calized close to the peaks of the quantum return probabilityRT

~right! obtained for the sloppy baker map withD51/4 and
N596.
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whereT denotes the length of the period,n ranges from 0 to
(2T21), and the symbolr (n) denotes the number obtaine
from n by reversing the order of its bits. The classical pe
odic orbits may be compared with the structures of the qu
tum return probability

RT~q,p!5^q,puBD
T~ uq,p&^q,pu!uq,p&. ~18!

The functionRT(q,p) measures the projection of the qua
tum stateuq,p&^q,pu iteratedT times by the superoperato
BD onto itself. As shown in Fig. 3, its maxima are inde
located in the vicinity of classical periodic orbits.

Spectral decomposition of the superoperatorBD deter-
mines the time evolution of the system. For any trace p
serving CP map~4! the operatorL has an eigenvalue
l151 corresponding to the invariant stater* . The spectrum
is symmetric with respect to the real axis, sinceL sends the
Hermitian density matrices into density matrices@15#. Not
every superoperator needs to be diagonalizable, i.e.,

FIG. 4. ~a! Eigenvalues of the superoperatorBD for N564 and
D51/4 in the complex plane, larger dot denotesl1. ~b! Depen-
dence of the mean von Neumann entropy^S& on time T for the
irreversible quantum baker map with D51/4 and
N564(3),128 (n),256 (s), and 512 (h). Horizontal lines rep-
resent the asymptotic estimation~16!.
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number of eigenvectors may be smaller than the numbe
eigenvalues. This is the case for the superoperator of tr
lation LD , the spectrum of which consists of two eigenva
ues 0 and 1. The multiplicity of the former is equal to 3N2/4,
and the corresponding subspace is defective for anyD.0.

Figure 4~a! shows allN2 eigenvalues of the linear opera
tor BD for N564 andD51/4. Observe a considerablespec-
tral gap, i.e., the difference 12ul2u, which determines the
rate of the convergence of an initial state toward the invari
density matrixr* . Moduli of the largest subleading eigen
values influence the slopea of the initially linear entropy
increase, directly related to the quantum dynamical entr
of the system~see, e.g.,@16#!. The data shown in Fig. 4~b!
were obtained by averaging over a sample of ten initia
pure states drawn randomly with respect to the unique, u
tarily invariant measure on the (2N22)-dimensional space
of pure states inHN .

In this work we introduced an irreversible baker map a
proposed a method of its quantization. On one hand, the l
N→` of the model may be useful to analyze the quantu
classical correspondence for chaotic, completely posi
quantum maps. On the other hand, the extreme quantum
gime of low N may be interesting from the point of view o
quantum information. Quantum baker map becomes a s
dard model for theoretical@17# and experimental@18# inves-
tigations of nuclear magnetic resonance quantum comput
and our generalization makes it possible to study the con
quences of irreversibility in the system. The effects of t
decoherence and the dynamics of entanglement in the
qubit version of this system (N54) as well as a generaliza
tion of the model will be presented elsewhere.
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