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Irreversible quantum baker map
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We propose a generalization of the model of classical baker map on the torus, in which the images of two
parts of the phase space do overlap. This transformation is irreversible and cannot be quantized by means of a
unitary Floquet operator. A corresponding quantum system is constructed as a completely positive map acting
in the space of density matrices. We investigate spectral properties of this superoperator and their link with the
increase of the entropy of initially pure states.
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In past years a reexploration of a finite-dimensional Hil-forms a unit square into a rectangular subset of it, while the
bert space{ and the space of density operators acting on itguantum map is a completely positive, trace preserving su-
took place. Emerging interest in properties of mixed quan{eroperator acting in the space of density matrices of a fixed
tum states is stimulated by research on the decoherence ptaze. Our research is related to recent papers of Soklakov and
nomena[1,2], and recent developments in modern applica-Schack 8], and Saraceno and Vallejos, who quantized a dis-
tions of quantum mechanics including quantum informationsipative version of the baker md®], and also studied a
cryptography, and computing3]. The concept of mixed stochastic system devised to take into account the effects of
states is crucial while analyzing nonunitary quantum evoludecoherencgl0]. However, the system analyzed here is dif-
tion, necessary to describe processes of measurement agflent, since it is not dissipative, it conserves the probability
interaction with an environmerit4,5], or by looking for  ang is deterministic. The quantization of the system on the
quantum analogs of classically irreversible dynamical sySiorys leads to a map acting on finite dimensional Hilbert
tems. The latter issue was considered in the pioneering P&pace, in contrast to the model discussed by Graf@m
pers of Grahanh6], who analyzed_an irreversible map on _the Therefore, the irreversible quantum baker map is suitable to
cylinder and found a corresponding quantum dynamics in af,yestigate the spectral properties of the superoperator and its
infinite Hilbert space. - . semiclassical regime. Furthermore, our approach allows one

Any quantum map\ should send positive density opera- tq jntroduce an irreversibility into any unitary quantum map
tors into other positive operators. Moreover, since any syspp the torus. Hence, by analyzing different unitary quantum
tem under consideration, described by a density operatopaps one may investigate the role of classical chaos in the
may be coupled to an environment, A® 1,, should be posi- speed of decoherence in the quantum system.
tive for any extension ofA by the m-dimensional identity The standard baker map is a transformation of the unit
matrix 1y,. This property is calleccomplete positiveness gquarel, a model of a finite phase space, onto itself. It con-
(CP) [7]. If the classical dynamics preserves probability, thensists of stretching the square in one direction, labejeand
the corresponding quantum map should preserve the trace gfjueezing it in another directidtabeledp) by the factor of
the density operator. _ 2. After the stretching procedure, the baker cuts the rectangle

Research on quantum analogs of classically chaotic dymnto two pieces and places the right piece at the top of the left
namical system often concentrates on two-dimensional areghe as shown in Fig. {transformation®). Assume that
preserving maps. The most popular examples include th@stead of doing this, the sloppy baker puts the right piece a
classical baker map and the Arnold cat map. They wergt o0 low, in such a way that 4/2 overlap with the left
quantized by finding the corresponding unitary operatorspiece occurs. This effect is described by the transformation

which act on a finite-dimensio'nal Hilbert spakg(see, e.g., L, (formally an interval translation map acting in tpedi-
Ref. [8], and references thergin

In this paper, we propose a generalization of the classical

and quantum baker maps. The classical map proposed is ir- ! 1
reversible, and therefore its quantum counterpart cannot be T — La
represented by a unitary operator. The classical map trans- ] Iaz
0 g 1 0 1 0 1
*Electronic address: lozinski@if.uj.edu.pl FIG. 1. Classical sloppy baker map; after the original baker
"Electronic address: pakonski@if.uj.edu.pl transformatior®, the top half of the square is shifted down hy2
*Electronic address: karol@cft.edu.pl (operatorL,).
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rection[11]), which shifts all points from the top half of the into bottom and top, and introduce two projection operators
square p>1/2) down byA/2. The formal definition of the Dy andD,, which when written in the eigenbasis of position
classical sloppy baker maig operator have the form

q e (2471241 1\ [2a-[2d] [Inz O {0 0
eA:( )—) 1 — 1 , Db:FN O 0 FNY Dt:FN 0 l FNY (6)
P/ \ z(p+[2a]) 5 (p+[2q](1-4)) NI2

(D) Notice that the superoperatdny (p) =DypD}+DpD] cor-

where[x] denotes the integer part afand the parametex ~ "€Sponds to the up/down measurement process, and the
belongs t0[0,1]. The mapO, is not reversible forA>0,  Kraus operatoré\,; =Dy andA, =D fulfill the condition (5).
because any point for whiche ([(1—A)/2],1/2) has two To construct a quantum shift trgnsf_ormatmg, we will use
preimages, while the points with>1— (A/2) have none. the unitary operator of translation in momentum,

We will use density distributionf on the square, _ N_
J, f(a)da=1, f=0, wherea is a short notation for the pair VIiky=lk+1), Vi=1y. @)

(d,p). The mapO, generates the Frobenius-Perron operatof e re k) denotes the discrete eigenstate of momentum which

acting in the space of classical density distributions, is periodic,|k+N)=|k) [13]. Fork=1, the state is localized
at the bottom ol. Then the vertical shift of the top half of
Mf(a)zf f(a')8(a—0O(a'))da’. (2 by A/2 is realized by the translation operai@) acting on
|

the previously measured system,
Since the map is not dissipative, aBd (1) Cl, the operator  C—NAS2
M preserves the probabilityy Mf(a)da=J f(e)da=1. Di=V Dr. ®
The densityf* (a)=1/(1—A) for a€[0,1]X[0,1-A) and
0 elsewhere is invariant under the action of the operato
Mf*=f*_ Several versions of quantum baker map on th
torus are knowr12—14. We use the first form of the quan-
tum operator proposed by Balazs and Vojbg],

Fus O Ax(p)=DppD{+D/pD'. 9)
B=FL< (3)
0  Funp/

We assume here that the exponent is integer; however, this
Eonstruction might be generalized for any réalSince the
eposition of the bottom part remains unchanged, the entire
quantum transformation, reads

This superoperator resets to the off-diagonal blocks ofsthe

) ) _ matrix zero in thep representation. This is related to the fact
where Fy denotes thd\lzp%l/r:\;[ discrete Fourier transforma- ¢ to displace one-half of the torus we need to perform a
. -~ i - .

tion, [Fylu=(14/N)e ukI=0,...N—=1. Since the measurement, which implies decoherence. Thus even for
sloppy mapO , does not enjoy the symmetry of the original A —q the operaton, differs from identity, but the effect of
baker map, we will not need the symmetric quantum modefne measurement becomes negligible in the classical limit
introduced by Saracer{d3]. Unitary operatoB acts on the n_, o

N-dimensional Hilbert spacky , whereN is even. The clas- Using the above superoperatodf), we construct the
sical map©, is irreversible, so its quantization cannot be gntire quantum sloppy baker map,

achieved by means of unitary operators. The quantum opera-

tor A, corresponding to the classical mag should act on Ba(p)=As(BpB")=D,BpB'D/+D/BpB'D'.

the space of mixed quantum states, and may be realized by a (10)
superoperator. Any superoperatdr that defines a com-

pletely positive map may be written in the so-called KrausNote that the Kraus operatofs =D,B andA,= D/ B fulfill

form [7], condition (5), with K=2.
K To demonstrate that quantum system defined by(EQ).
_ N corresponds to the classical sloppy baker map we compare
Alp) 2‘1 APAT @ the classical and the quantum structures in the phase space.

In order to define quantum quasiprobability distribution, we
wherep is a density matrix and is finite. If operatorsA; use a family of states localized at points of the square
fulfill the condition NXN lattice in the phase space constructed by means of

K translation operatorgl3]. The operatoiJ of translation in
A position is defined similarly t&/,
Zl AlA =1, (5)
- Ulm=[n+1), UN=1q, (1)
the mapA(p) is trace preserving. The classical mép, N . o
transforms the bottom half of the squarénto itself and ~ Where[n) are position eigenstates, satisfyifrgtN)=|n).
shifts the top one down by/2. The two halves of are As a reference state we choose arbitrarily the wave packet

transformed separately. Therefore we split the phase spa¢g,3) localized in G,3),
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p FIG. 3. Classical orbits of periofi=1,2,3,4 (X) (left) are lo-
calized close to the peaks of the quantum return probaliity
00 1 (right) obtained for the sloppy baker map with=1/4 and
q N=096.

FIG. 2. Sloppy baker map wittA=1/4. Time evolution space structures at the length scale of the order of
of an initially localized classical density concentrated at#2:N~12 the classical density becomes narrower than its
ap=(0.25,0.25)(left) and Husimi representatiai4) of the density  quantum counterpart already after first iteration.
matrix of an initially pure state localized in the same paigtand After 30 iterations of the classical map the density distri-
iterated by the quantum mag0) for N=512 (right). bution is close to the invariant measute. Also the quan-

i tum stateB3(|ao)(ao|) is close to the invariant density ma-
<n|1/2,1/3:(Z/N)71/4ef{ﬂ'[nf(N/2)] /N}*Iﬂn7 (12) trix

which becomes Gaussian for—o. We translate it to any p* =Ba(p*), (15
point (g,p), whereNg andNp are integers\ is even,
the existence of which is guaranteed by the trace preserving
|q,p)= VNP~ (NAYNa=(N2[1/2 172 (13)  condition (5). The statep* is localized on the rectangle
[0,1]X[0,1—A]. Moreover, it is almost isotropic on the cor-
fespondind N(1— A)]-dimensional subspace. To show this,
we verified that the von Neumann entropy of the invariant

These states allow one to define a Husimi representation i

the phase space of any mixed quantum spate
stateS(p*)=—Trp*Inp* is close to the maximal entropy

Hp(q,p)=<q,p|p|q,p>. (14) for the [N(1—A)]-dimensional subspace of the Hilbert

We analyzed the evolution of an exemplary sthig)  SPacefin,
localized atey and the classical transformation of the corre- oy IN(L-A)] . _
sponding density distribution. On the left-hand side of Fig. 2, Se )NSLWaX =IN(N(1—-4)). (16)
we present the classical density and its image after . . . . - . i
T=1.2,5, and 30 iterations of the Frobenius-Perron operator; It is instructive to look at the periodic orbits of the clas

(2). The right-hand side shows the Husimi representation§ICaI transformatio® , . They are those of the originale-

(14) of the initially pure quantum statee,)(ap| and its im- versible baker map with momentum scaled by the factor

ages aftefT actions of the superoperat8 . The quantum (1=4),

quasiprobability distributiorH , is localized in the same re- N ((n)

gion of the phase space as the classical density distribution. qt = . pr= (1—A), (17)
Since the Husimi distribution may resolve quantum phase- 2T—1 2T—1
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number of eigenvectors may be smaller than the number of

------- o oo o o o o eigenvalues. This is the case for the superoperator of trans-
""" g e e lation A4, the spectrum of which consists of two eigenval-
ues 0 and 1. The multiplicity of the former is equal N34,
and the corresponding subspace is defective for&amp.

Figure 4a) shows allN? eigenvalues of the linear opera-
tor B, for N=64 andA=1/4. Observe a consideraldpec-
tral gap, i.e., the difference %|\,|, which determines the
rate of the convergence of an initial state toward the invariant
Re A 15 T 30 density matrixp*. Moduli of the largest subleading eigen-
values influence the slope of the initially linear entropy
A=1/4 in the complex plane, larger dot denotes (b) Depen-  INCréase, directly related to the quantum dyngmlcgl entropy
dence of the meanp vonpNeumang entrqiS) onQEt}iﬁmeT forpthe of the sys’gen’(see, e.g.[16_]). The data shown in F'g'_(b_)_
imeversible quantum baker map withA=1/4 and Were obtained by averaging over a sample of ten initially
N=64(x),128 (A),256 (O), and 512 [1). Horizontal lines rep-  Pure states drawn randomly with respect to the unique, uni-

FIG. 4. (a) Eigenvalues of the superoperat®y for N=64 and

resent the asymptotic estimati¢hé). tarily invariant measure on the K2-2)-dimensional space
of pure states irtHy .
whereT denotes the length of the periadyanges from 0 to In this work we introduced an irreversible baker map and

(2T—1), and the symbal(n) denotes the number obtained proposed a method of its quantization. On one hand, the limit
from n by reversing the order of its bits. The classical peri-N— of the model may be useful to analyze the quantum-
odic orbits may be compared with the structures of the quanclassical correspondence for chaotic, completely positive

tum return probability quantum maps. On the other hand, the extreme quantum re-
gime of lowN may be interesting from the point of view of
RT(q,p)=(q,p|BZ(|q,p)<q,p|)|q,p). (19 quantum information. Quantum baker map becomes a stan-

— o dard model for theoreticdll 7] and experimentdl18] inves-
The functionR'(q,p) measures the projection of the quan- tigations of nuclear magnetic resonance quantum computing,
tum state|q,p)(q,p| iteratedT times by the superoperator ang our generalization makes it possible to study the conse-
B4 onto itself. As shown in Fig. 3, its maxima are indeed quences of irreversibility in the system. The effects of the
located in the vicinity of classical periodic orbits. decoherence and the dynamics of entanglement in the two-

~Spectral decomposition of the superoperaBy deter-  qupit version of this systemN=4) as well as a generaliza-
mines the time evolution of the system. For any trace pretion of the model will be presented elsewhere.

serving CP map(4) the operatorA has an eigenvalue

\1=1 corresponding to the invariant stat&. The spectrum It is a pleasure to thank R. Alicki, A. Becker, M. Kus
is symmetric with respect to the real axis, sinkesends the F. Mintert, R. Rudnicki, and D. Woik for fruitful discus-
Hermitian density matrices into density matridd$|. Not  sions. This work was supported by Polish KBN Grant No.
every superoperator needs to be diagonalizable, i.e., th&P03B-072-19.
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